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Abstract
Knots in the Chern–Simons field theory with the Lie super gauge group
SU(M|N) are studied, and the SL(α, β, z) polynomial invariant with skein
relations are obtained under the fundamental representation of su(M|N).

PACS numbers: 11.15.−q, 02.10.Kn

1. Introduction

Chern–Simons (CS) theories are Schwarz-type topological field theories—a CS action is both
gauge invariant and generally covariant, and a quantum CS theory has a general variance
in the BRST formalism under the Landau gauge although a metric enters the gauge-fixing
term [1]. CS theories were first introduced to physics by the study of quantum anomaly of
gauge symmetries by Jackiw et al [2]. Witten pointed out [3] that CS theories provide a field
theoretical origin for polynomial invariants of links in knot theory. Different Lie gauge groups
of the CS theories and different algebraic representations of the gauge groups lead to different
link invariants [3–5]. Perturbative expansions of correlation functions of Wilson loops in CS
theories present Vassiliev invariants [6–8]. Recent developments include the applications of
CS theories in topological string theory [9] and the (2 + 1)-dimensional quantum gravity [10].

Super symmetries have found realizations in various physical systems [11].
Representation theories for Lie superalgebras have been developed by many authors [12, 13].
Link invariants have been obtained from quantum super group invariants by Gould et al from
the algebraic point of view [14], including the HOMFLY polynomial from the Uq(su(M|N))

invariants (M �= N), the Kauffman polynomial from the Uq(osp(M|2N)) invariants and the
Alexander–Conway polynomial from the Uq(gl(N |N)) invariants.

In this paper we will use the field theoretical point of view to study knots in the CS field
theory with the super gauge group SU(M|N),M �= N [15, 16]. Under the fundamental
representation of the superalgebra su(M|N), a correlation function of Wilson loop operators
will be studied and the SL(α, β, z) link polynomial be obtained [4]. One will discuss the
relationships between the SL(α, β, z) polynomial and the HOMFLY and Jones polynomials,
and show that the CS theory with the super group SU(N + 2|N) has the Jones polynomial
invariant. This is different from the situation of the CS theory with the normal Lie group
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SU(N)—under the fundamental representation, only the SU(2) CS theory has the Jones
polynomial.

This paper is organized as follows. In section 2, the notation of Lie superalgebra su(M|N)

under the fundamental representation is given. In section 3, path variation within correlation
functions of Wilson loops in the CS theory is rigorously studied. In section 4, the variation
of correlation functions obtained in section 3 is formally discussed with respect to different
link configurations, without integrating out the path integrals. From the formal analysis the
SL(α, β, z) polynomial with skein relations is obtained, and its relationships to other knot
polynomials are discussed. The paper is summarized in section 5.

2. Notation and preliminary

Let us fix the notation of the superalgebra su(M|N) first. Consider the elements {êab|a, b =
1, . . . ,M + N,M �= N} satisfying the following super commutation relations [17–20]:

[êab, êcd ] = êadδbc − (−1)([a]+[b])([c]+[d])êcbδda. (1)

Here the Z2-grading is given by [êab] = [a] + [b] with [1] = · · · = [M] = 0 and
[M + 1] = · · · = [M + N ] = 1. In the fundamental representation êab is realized by

êab = eab − δab(−1)[a]

M − N
I, (2)

where eab is the (M + N) × (M + N) matrix unit with entry 1 at the position (a, b) and 0
elsewhere. êab satisfies the traceless requirement Str(êab) = 0, where Str(X) is the supertrace
of the representation matrix of X ∈ g, Str(X) = ∑

i (−1)[i]Xii , with i denoting the entry
indices. The êabs have the identity

∑M+N
a=1 êaa = 0. The (M + N)2 − 1 generators of the

supergroup SU(M|N), denoted by {Êab, F̂ab, Ĥcc}, can be constructed in terms of êab:

Êab = i

2
(êab − êba), F̂ab = 1

2
(êab + êba), a, b = 1, . . . ,M + N, a �= b;

Ĥcc =
c∑

l=1

l(êll − êl+1,l+1), c = 1, . . . ,M + N − 1,

(3)

where there is no summation for repeating c, l. Êab, F̂ab and Ĥcc satisfy the properties of
tracelessness and unitarity: Str(Êab) = Str(F̂ab) = Str(Ĥcc) = 0; (Êab)

† = Êab, (F̂ab)
† = F̂ab

and (Ĥcc)
† = Ĥcc. Êab and F̂ab play the role of the raising/lowering generators, and Ĥcc plays

that of the elements of the Cartan subalgebra of su(M|N). Hereinafter for convenience one
uses the basis {êab, a �= b; êcc, c = 1, . . . ,M + N − 1}.

We begin the study of the knots in a CS field theory by considering the correlation function
of Wilson loops under the fundamental representation of su(M|N) [3–5]:

〈W(L)〉 = 〈
Str P ei

∮
L

Aμ(x) dxμ 〉 = Z−1Str P

∫
DA eiS ei

∮
L

Aμ(x) dxμ

, (4)

where Z = ∫
DA eiS the normalization factor. L denotes the integration loop and P the proper

product. S is the non-Abelian CS action,

S = k

4π

∫
R3

d3xεμνρ Str

(
Aμ∂νAρ +

2

3
AμAνAρ

)
, (5)

with k being an integer valued constant. Aμ is the SU(M|N) gauge potential, Aμ = Aab
μ êab.

The gauge field tensor Fμν is induced by Aμ:

Fμν = Fab
μν êab, F ab

μν = ∂μAab
ν − ∂νA

ab
μ − (−1)([a]+[c])([c]+[b])

(
Aac

μ Acb
ν − Aac

ν Acb
μ

)
. (6)

2
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The grading [Aμ] = [Fμν] = [S] = even.
The gauge invariance of the phase of the action, eiS , needs more discussion. The gauge

transformations of Aμ and Fμν are Aμ −→ 
Aμ
−1 + ∂μ

−1 and Fμν −→ 
Fμν

−1,

with 
 denoting a group G transformation. It is known that if G is a normal Lie group, the
action S transforms as

S −→ S +
k

4π

∫
R3

d3x∂μjμ + 2πk
1

24π2

∫
R3

d3xεμνρ Str[aμaνaρ], (7)

where aμ = 
−1∂μ
 and jμ = εμνρ Str(Aνaρ). The second term in (7) is a total divergence
which has no contribution to the action as jμ vanishes at infinity. The third term, marked
as SWZW, is a Wess–Zumino–Witten (WZW) term. Jackiwet al [2, 21] examined this term
for an arbitrary non-Abelian Lie group G. They pointed out that when 
 satisfies the regular
condition—
 tends to a definite limit at infinity, limx→∞ 
(x) = I—the WZW term is a total
differential

SWZW = 2πk
1

24π2

∫
R3

dxμ∂μ[�νρdxν ∧ dxρ] = 2πk
1

π2

∫
R3

d�, (8)

where � is a 2-form constructed by 
, and d� serves as a volume element [21]. Since
the regular condition implies the compactification R

3 −→ S3, equation (8) becomes
SWZW = 2πk 1

π2

∫
S3 d�, which gives the degree of the homotopy mapping 
 : S3 → G

when G is compact. Hence for a compact group G one has SWZW = 2πkw (
), and the
action transforms as S → S + 2πkw(
), where w(
) is the so-called winding number,
w(
) ∈ π3[SU(M|N)] = Z. In this paper, the gauge group is the super group SU(M|N);
a point that needs clarification is whether the WZW term is able to be written as a total
differential. This problem is being studied by us at present and will be discussed in our further
papers.

Under the fundamental representation (2) the êab has the following supertraces:

Str(êabêcd) = (−1)[a]δadδbc − (−1)[a]+[c]δabδcd

M − N
, (9)

Str(êabêcd êef ) = (−1)[a]δaf δbcδde − (−1)[a]+[c] δabδcf δde

M − N
− (−1)[c]+[f ] δcdδaf δbe

M − N

− (−1)[f ]+[a] δef δadδbc

M − N
+ 2(−1)[a]+[c]+[e] δabδcdδef

(M − N)2
. (10)

In terms of (9) and (10) the component form of the SU(M|N) CS action reads

S = k

4π

∫
d3xεμνρ(−1)[b]

[
Aab

μ ∂νA
ba
ρ +

2

3
(−1)[c]+[a][b]+[b][c]+[c][a]Aab

μ Abc
ν Aca

ρ

− (−1)[a]
Aaa

μ ∂νA
bb
ρ

M − N
− 2

3
(−1)[a]

Aaa
μ Acb

ν Abc
ρ

M − N
+

4

3
(−1)[a]+[c]

Aaa
μ Abb

ν Acc
ρ

(M − N)2

]
. (11)

It can be proved that S has an important property [1, 4, 5]:

2π

k
εμνρ(−1)[b] ∂S

∂Aab
ρ (x)

êba = Fba
μν (x)êba. (12)

This gives the equation of motion of a pure gauge: 2π
k

δS
δA

= F = 0, which is the same as
the commonly known equation of motion in the CS theories with normal Lie gauge groups.
Equation (12) will be crucial in following sections for derivation of the skein relations of knots
in the CS theory with the SU(M|N) gauge group.

3



J. Phys. A: Math. Theor. 43 (2010) 255202 X Liu

1

2

3

4

x0

(a)

1

2

3

4

x0

(b)

x0

4

3

2

1

(c)

Figure 1. Overcrossing, undercrossing and non-crossing: (a) L+; (b) L−; (c) L0.

3. Variation of correlation function

In this section correlation functions of Wilson loops will be studied, with emphasis placed on
variation of integration paths and the induced changes of the correlation functions.

Consider two knots which are almost the same except at one double-point x0, as illustrated
in figure 1. Here 1, 2, 3, 4 are the abbreviations for the points x1, x2, x3, x4, respectively.
Denote the knot in figure 1(a) as L+ and that in figure 1(b) as L−. Figure 1(c) shows the
non-crossing situation. Let U(1, 2) (resp. U(3, 4)) be the propagation process along the
segment (1 → 2) (resp. (3 → 4)). For convenience denote U(1, 2) in figure 1(a) as U+(1, 2),
and that in figure 1(b) as U−(1, 2). In both figures 1(a) and (b), the process (1 → 2) is prior to
(3 → 4) in the sense of proper order. In the following we will discuss the difference between
the overcrossing L+ and the undercrossing L−, by fixing the segment (3 → 4) and moving
the segment (1 → 2) from back to front.

Let 〈W(L+)〉 and 〈W(L−)〉 be the respective correlation functions of L+ and L−. Each
of them can be written as a series of propagation processes in proper order:

〈W(L±)〉 = 〈Str[· · ·U±(1, 2) · · · U(3, 4) · · ·]〉, (13)

where the propagators are realized by

U±(1, 2) = ei
∫ 2

1 Aμ(x) dxμ |L± , U(3, 4) = ei
∫ 4

3 Aμ(x) dxμ

, (14)

the grading of U±(1, 2) and U(3, 4) being even. The difference between the correlation
functions of L+ and L− is

〈W(L+)〉 − 〈W(L−)〉 = 〈Str(· · · [U+(1, 2) − U−(1, 2)] · · · U(3, 4) · · ·)〉. (15)

The path variation L− → L+, given by [U+(1, 2) − U−(1, 2)] in (15), is stereoscopically
illustrated in figure 2, where the segment (1 → 2) in L− corresponds to the path 1ACDB2,
and that in L+ to 1AEFB2.

Then

U+(1, 2) − U−(1, 2) = U(1, A)

(
i
∫

AEFB
Aμ(x) dxμ − i

∫
ACDB

Aμ(x) dxμ

)
U(B, 2), (16)

where the exponential expansion ei
∫

Aμ(x) dxμ = 1 + i
∫

Aμ(x) dxμ applies. In the light of
Stokes’ law one has

U+(1, 2) − U−(1, 2) = U(1, A)

(
i
∫

∂ AEFBDC
Aμ(x) dxμ

)
U(B, 2)

= U(1, A)

(
i
∫

AEFBDC

1

2
Fμν(x)dxμ ∧ dxν

)
U(B, 2), (17)

4
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Figure 2. Three-dimensional geometric illustration of path variation.

where ∂
AEFBDC

is the boundary of the tiny area AEFBDC at x0. In (17) the curvature Fμν(x)

is the SU(M|N) gauge field tensor which has the expansion Fμν(x) = Fab
μν (x)êab.

Thus the difference between the path integrals 〈W(L−)〉 and 〈W(L+)〉 is

〈W(L+)〉 − 〈W(L−)〉 = Z−1
∫

AEFBDC

1

2
dxμ ∧ dxν

∫
DA eiS

× Str[· · ·U(1, A) iFab
μν (x)êabU(B, 2) · · · U(3, 4) · · ·]. (18)

Using the property of the Chern–Simons action (12), one has

〈W(L+)〉 − 〈W(L−)〉 = 2π

k
Z−1

∫
AEFBDC

d�ρ

∫
DA

× Str

[
· · · U(1, A)(−1)[a]êba

∂ eiS

∂Aab
ρ (x)

U(B, 2) · · · U(3, 4) · · ·
]

= − 2π

k
Z−1

∫
AEFBDC

d�ρ

∫
DA eiS

× Str

[
· · · U(1, A)(−1)[a]êbaU(B, 2)

∂

∂Aab
ρ (x)

[· · ·U(3, 4) · · ·]
]

, (19)

where d�ρ = 1
2ερμν dxμ ∧ dxν is the surface element of AEFBDC , and the technique of

integration by parts has been used. In (19) the propagators [· · · U(1, A)êbaU(B, 2)] are taken
out of the derivative ∂

∂Aab
ρ (x)

because they are not impacted by the move of figure 2. In the

remaining propagation processes [· · ·U(3, 4) · · ·], only (3 → 4) passes the point x0; hence
only U(3, 4) is impacted by the move. Therefore,

〈W(L+)〉 − 〈W(L−)〉 = −2π

k
Z−1

∫
AEFBDC

d�ρ

∫
DA eiS

· Str

[
· · · U(1, A)(−1)[a]êbaU(B, 2) · · ·

(
∂

∂Aab
ρ (x)

U(3, 4)

)
· · ·

]
. (20)

Let us examine
(

∂
∂Aab

ρ (x)
U(3, 4)

)
in (20). It is shown in figure 2 that

U(3, 4) = ei
∫ 4

3 Aλ(y) dyλ = U(3,G) e
∫ H

G
iAkl

λ (y)êkldyλ

U(H, 4), (21)

5
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where GH is a short segment passing x0. Thus

∂

∂Aab
ρ (x)

U(3, 4) = U(3,G)

[∫ H

G

iδ3(x − x0) dxρêab e
∫ H

G
iAkl

λ (y)êkl dyλ

]
U(H, 4), (22)

and (20) becomes

〈W(L+)〉 − 〈W(L−)〉 = −i
2π

k
Z−1

∫
AEFBDC

∫ H

G

δ3(x − x0) d�ρ ⊗ dxρ

∫
DA eiS

· Str[· · · U(1, A)(−1)[a]êbaU(B, 2) · · · U(3, x0)êabU(x0, 4) · · ·], (23)

where dxρ is along the direction of the segment GH. In (23) a volume integral is recognized:

[vol]x0 =
∫

AEFBDC

∫ H

G

δ3(x − x0) d�ρ ⊗ dxρ, (24)

which has the evaluation

[vol]x0

{=0, trivial;
= ± 1, non-trivial.

(25)

In detail,

• [vol]x0 = 0 describes the trivial case that in figure 2 dxρ is parallel to the plane of
AEFBDC ; namely, the move from ACDB to AEFB is done by sliding along 3GH4.

Therefore d�ρ ⊗ dxρ = 0.
• [vol]x0 = 1 describes the non-trivial move L− → L+, where dxρ is perpendicular to

AEFBDC and d�ρ ⊗ dxρ = 1; otherwise, [vol]x0 = −1 for L+ → L−, where dxρ is
perpendicular to AEFBDC but d�ρ ⊗ dxρ = −1. The case we come across in figure 2 is
the former, so [vol]x0 = 1.

Therefore, (23) becomes

〈W(L+)〉 − 〈W(L−)〉 = −i
2π

k
Z−1

∫
DA eiS

× Str[· · ·U(1, A)(−1)[b]êabU(B, 2) · · · U(3, x0)êbaU(x0, 4) · · ·]. (26)

4. Skein relations

In this section the SL(α, β, z) polynomial invariant for knots in the SU(M|N) CS field theory
will be derived from (26), and its relationship to the HOMFLY and Jones polynomials will be
discussed.

Under the fundamental representation the entries of the matrices êab satisfy the Fierz
identity [22]

(−1)[b](êab)ij (êba)kl = (−1)[j ]δilδjk − 1

M − N
δij δkl . (27)

Hence (26) leads to

〈W(L+)〉 − 〈W(L−)〉 = −i
2π

k
Z−1

∫
DA eiS

· Str[· · ·U(1, A)U(x0, 4) · · ·] Str[U(B, 2) · · · U(3, x0)]

+ i
2π

k

1

M − N
Z−1

∫
DA eiS · Str[· · ·U(1, A)U(B, 2) · · · U(3, x0)U(x0, 4) · · ·].

(28)

6
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(a) (b) (d) (e)(c)

Figure 3. Typical configurations: (a) writhing L̂+; (b) writhing L̂−; (c) non-writhing L̂0;
(d) trivial circle L̂c; (e) non-intersecting union L̂i .

When the points A and B approaching x0, the first term of (28) corresponds to the non-crossing
case L0 in figure 1(c). For the second term, however, one has two ways to connect A and
B—the undercrossing and the overcrossing—in order to form a propagation process (1 → 2).
Treating these two crossing ways equally, one has(

1 − i
π

k

1

(M − N)

)
〈W(L+)〉 −

(
1 + i

π

k

1

(M − N)

)
〈W(L−)〉 = −i

2π

k
〈W(L0)〉. (29)

Then, considering the weak coupling limit of large k [3], we define

β = 1 − i
π

k

1

(M − N)
+ O

(
1

k2

)
, z = −i

2π

k
+ O

(
1

k2

)
, (30)

and obtain an important skein relation

β〈W(L+)〉 − β−1〈W(L−)〉 = z〈W(L0)〉. (31)

For the purpose of examining knot writhing, let us consider the special case that the point
x2 is identical to x3 in figure 1. Then in (26) one has

lim
B→x0;x2=x3

U(B, 2) · · · U(3, x0) = I, (32)

and

〈W(L̂+)〉 − 〈W(L̂−)〉 = −i
2π

k
Z−1

∫
DA eiS Str[· · ·U(1, A)(−1)[b]êabêbaU(x0, 4) · · ·],

(33)

where L̂+ and L̂− are two writhing situations shown in figure 3(a) and (b). Figure 3(c) shows
the non-writhing situation L̂0.

In the above the factor (−1)[b]êabêba is the Casimir operator

(−1)[b]êabêba = 2C2I, C2 = (M − N)2 − 1

2(M − N)
, M �= N. (34)

When A approaches x0 one has

〈W(L̂+)〉 − 〈W(L̂−)〉 = −i
4π

k
C2〈W(L̂0)〉, (35)

where 〈W(L̂0)〉 = Z−1
∫
DA eiSStr[· · ·U(1, x0)U(x0, 4) · · ·]. The move L̂− → L̂+ is a

change of the writhe of the path segment. In this regard an intermediate stage L̂0 can
be inserted and the move becomes L̂− → L̂0 → L̂+. Then the correlation function
becomes 〈W(L̂+)〉 − 〈W(L̂−)〉 = [〈W(L̂+)〉 − 〈W(L̂0)〉] + [〈W(L̂0)〉 − 〈W(L̂−)〉]. The two

7
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subprocesses L̂− → L̂0 and L̂0 → L̂+ should be equivalent; hence, 〈W(L̂+)〉 − 〈W(L̂0)〉 =
〈W(L̂0)〉 − 〈W(L̂−)〉 = −i 2π

k
C2〈W(L̂0)〉, and we arrive at another skein relation

〈W(L̂+)〉 = α〈W(L̂0)〉, 〈W(L̂−)〉 = α−1〈W(L̂0)〉, α = 1 − i
2π

k
C2 + O

(
1

k2

)
.

(36)

Besides (31) and (36), one needs the correlation function for the trivial circle L̂c shown
in figure 3(d):

〈W(L̂c)〉 = Z−1
∫

DA eiS Str[L̂c] = Z−1
∫

DA eiS Str[I ] = (M − N). (37)

Thus, in summary, we have acquired the following skein relations for knots in the SU(M|N)

CS field theory:

〈W(L̂c)〉 = M − N, (M �= N), (38)

〈W(L̂+)〉 = α〈W(L̂0)〉, 〈W(L̂−)〉 = α−1〈W(L̂0)〉, (39)

β〈W(L+)〉 − β−1〈W(L−)〉 = z〈W(L0)〉, (40)

with

α = 1 − i
2π

k
C2 + O

(
1

k2

)
, β = 1 − i

π

k

1

(M − N)
+ O

(
1

k2

)
,

z = −i
2π

k
+ O

(
1

k2

)
.

(41)

These relations present a polynomial invariant 〈W(L)〉 for the knots, known as the SL(α, β, z)

polynomial proposed by Guadagnini et al [1, 4].
It is checked that equation (39) is consistent with (40). Considering the special case

x2 = x3 for (31) there is

β〈W(L̂+)〉 − β−1〈W(L̂−)〉 = z〈W(L̂i)〉, (42)

where L̂i is the non-intersecting union of a trivial circle and a line segment shown in
figure 3(e). The lhs of (42) gives β〈W(L̂+)〉 − β−1〈W(L̂−)〉 = (βα − β−1α−1)〈W(L̂0)〉 with
respect to (39). The rhs of (42) is z〈W(L̂i)〉 = zZ−1

∫
DA eiS Str[· · ·U(1, 4) · · ·] Str[L̂c] =

z(M−N)〈W(L̂0)〉. Hence βα−β−1α−1 = z(M−N), which is consistent with the definitions
of α, β and z.

The SL(α, β, z) polynomial is regular isotopic, but not ambient isotopic. Namely, 〈W(L)〉
is invariant under the type-II and -III Reidemeister moves (shown in figure 4), but is not
invariant under the type-I move. Indeed,

• in a type-II move, path variation of figure 2 takes place at both the points x0a and x0b.
Then there are volumes of variation given in (24) at both x0a and x0b, which are marked as
[vol]x0a

and [vol]x0b
respectively. It can be checked that [vol]x0a

and [vol]x0b
take opposite

sign: [vol]x0a
= 1, [vol]x0b

= −1. Hence totally the type-II move causes no variation in
the correlation function;

• in a type-III move, there are neither ‘undercrossing to overcrossing’ nor ‘overcrossing to
undercrossing’ moves taking place, so the volume of variation is zero, and the type-III
move causes no variation in the correlation function;

• in a type-I move, the variation of the correlation function is given by (39).
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x0bx0a
x0bx0a

(c)

(b) 

(a)

Figure 4. Reidemeister moves: (a) type-I; (b) type-II; (c) type-III.

In the following the relationships between the SL(α, β, z) polynomial and other knot
polynomial invariants will be studied. 〈W(L)〉 will be modified to be an ambient-isotopic
invariant, and a difference between the normal and super Lie gauge groups, SU(N) and
SU(M|N), will arise from the Jones polynomial.

Firstly, the ambient-isotopic HOMFLY knot polynomial invariant can be constructed from
〈W(L)〉 by introducing a factor describing knot writhing:

〈P(L)〉 = α−ω(L)〈W(L)〉. (43)

Here ω(L) is the writhe number of a knot L, defined as

ω(L±) = ω(L0) + ε(L±; x0) = ω(L0) ± 1, (44)

where ε(L±; x0) is the sign of the crossing point x0 on L±: ε(L±; x0) = ±1. For L̂+, L̂− and
L̂0, ( 44) reads

ω(L̂+) = ω(L̂0) + 1, ω(L̂−) = ω(L̂0) − 1. (45)

Equation (45) means that L̂+ contributes a 1 to the writhe number, while L̂− contributes a
(−1). Then using (39) and (43) one has

〈P(L̂+)〉 = 〈P(L̂0)〉, 〈P(L̂−)〉 = 〈P(L̂0)〉, (46)

meaning 〈P(L)〉 is invariant under the type-I Reidemeister move. Furthermore 〈P(L)〉 satisfies

(αβ)〈P(L+)〉 − (αβ)−1〈P(L−)〉 = zP (L0). (47)

Hence, one arrives at the skein relations for 〈P(L)〉:
〈P(L̂c)〉 = M − N, (48)

t〈P(L+)〉 − t−1〈P(L−)〉 = z〈P(L0)〉, (49)

where

t ≡ αβ = 1 − i
2π

k

(M − N)

2
+ O

(
1

k2

)
, z = −i

2π

k
+ O

(
1

k2

)
. (50)
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1

2

3

4

x0

(b)

1

2

3

4

x0

(a)

x0

4

3

2

1

(c)

Figure 5. Unknots: (a) L̃+; (b) L̃−; (c) L̃c .

(48) can be obtained from (49) by considering t〈P(L̃+)〉 − t−1〈P(L̃−)〉 = z〈P 〈L̃c〉〉, where
L̃+, L̃− and L̃c denote the unknots shown in figure 5.

Equations (48) and (49) show 〈P(L)〉 is an ambient-isotopic HOMFLY polynomial
invariant.

Secondly, if specially M − N = 2 in (48)–(50), the z is related to t as z = t
1
2 − t−

1
2 , up

to the first order. This means that in the SU(N + 2|N) CS field theory, under the fundamental
representation there is a knot polynomial 〈V (L)〉 ≡ 〈P(L)〉 which satisfies the skein relation

t〈V (L+)〉 − t−1〈V (L−)〉 = (
t

1
2 − t−

1
2
)〈V (L0)〉. (51)

This 〈V (L)〉 is known as the Jones polynomial1. Therefore there are a series of CS theories
with the Lie super gauge group SU(N + 2|N),N ∈ Z

+, which have the Jones polynomial.
This is different from the situation of the CS theory with the normal Lie group SU(N)—it
is known that under the fundamental representation, only the SU(2) theory has the Jones
polynomial invariant among all SU(N) CS theories, N = 2, 3, . . . [1, 3, 8].

Different choices of gauge groups with different algebraic representations lead to different
knot polynomials in CS field theories [8]. In our further work the relationship between
SL(α, β, z) and the Kauffman polynomials in the OSp(1|2) CS field theory will be studied.

Finally, α, β and z in the SL(α, β, z) polynomial and t in the HOMFLY polynomial can
be expressed in a unified way. Introducing a variable

q = e−i 2π
k , (52)

α, β, z and t can be regarded as the lower order expansions of q exponentials [1, 3, 4]:

α = qC2 = q
(M−N)2−1

2(M−N) , β = q
1

2(M−N) , z = q
1
2 − q− 1

2 and t = q
M−N

2 . Then SL(α, β, z) shown in
(38)–(40) and HOMFLY polynomial in (48)–(49) can be written more elegantly as

〈W(L̂c)〉 = M − N (M �= N), (53)

〈W(L̂+)〉 = q
(M−N)2−1

2(M−N) 〈W(L̂0)〉, (54)

〈W(L̂−)〉 = q
− (M−N)2−1

2(M−N) 〈W(L̂0)〉, (55)

q
1

2(M−N) 〈W(L+)〉 − q
− 1

2(M−N) 〈W(L−)〉 = (
q

1
2 − q− 1

2
)〈W(L0)〉, (56)

and

〈P(L̂c)〉 = q
M−N

2 − q− M−N
2

q
1
2 − q− 1

2

, (57)

1 Compared to the standard conventions adopted in mathematics, there is a sign difference in the skein relation (51)
of the Jones polynomial. See [1] for this discussion.
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q
M−N

2 〈P(L+)〉 − q− M−N
2 〈P(L−)〉 = (

q
1
2 − q− 1

2
)〈P(L0)〉. (58)

5. Conclusion

In this paper we have studied knots in the CS field theory with the gauge group SU(M|N).
In section 2, the notation for the fundamental representation of the Lie superalgebra su(M|N)

is fixed, and an important property of the CS action, equation (12), is presented. In
section 3, variation of the correlation function of Wilson loops is rigorously studied. In
section 4, the variation of correlation functions (26) is discussed for different link
configurations. It is addressed that the path integrals have been formally expressed as
propagators instead of being integrated out. A rigorous development of techniques for path
integrals awaits future advances in the mathematical theory of functional integrals. From the
formal analysis the SL(α, β, z) knot polynomial and its skein relations, (38)–(40), are obtained.
In terms of the SL(α, β, z) polynomial the HOMFLY and Jones knot polynomials as well as
their skein relations (48) to (51) have been derived by considering the knot writhing.
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